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Abstract
Engineering design is a knowledge intensive process. The execution of each task in the process requires various aspects of

knowledge and experience. Therefore, organizing, storing and retrieving product design information, design intents and

underlining design knowledge is one of the most important tasks in engineering knowledge management.

This study develops a novel scheme for functional feature-based reference design retrieval using adaptive resonance theory

(ART1) neural network to provide engineering designers with easy access to relevant design and other knowledge. This retrieval

process includes the steps of functional feature-based query, case searching, and case ranking. The technology involves a binary

code-based representation for functional features, ART1 neural network for functional feature-based case clustering, functional

feature-based case similarity ranking, and a case-based representation for designed entities.

The objective of this study can be achieved by performing the following tasks: (i) designing a functional feature-based

reference design retrieval process, (ii) developing a functional feature representation, (iii) investigating ART1 neural network,

(iv) implementing a functional feature-based reference design retrieval mechanism, and (v) experimenting with functional

feature-based case clustering.
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1. Introduction

With the advent of the knowledge economy,

knowledge has become the asset for enterprises in

the 21st century. Whether enterprise knowledge can be

effectively organized, stored and shared is a key factor
.
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for enterprise success. Consequently, effectively

organizing, storing and sharing knowledge to boost

business intelligence (BI) is crucial for enterprises in

the knowledge economy age.

Engineering design [12,21] is the process of

establishing requirements based on customer needs,

transforming them into performance specifications

and functions, and then mapping those specifications

and functions and converting them into design

solutions that can be economically manufactured

and produced based on creativity, scientific principles,

and technical knowledge.

Engineering design, a knowledge intensive process,

includes the tasks of conceptual design, detailed

design, engineering analysis, assembly design, pro-

cess design, and performance evaluation. Each task is

conducted using various aspects of knowledge and

experience. Whether ‘‘the knowledge and experience

can be organized, stored and effectively retrieved is a

major determining factor in increasing product

development capability and quality and reducing

development cycle time and cost. Therefore, organiz-

ing, storing, and retrieving product design informa-

tion, design intents and underlining design knowledge

are the basis of and also one of the most important

tasks in engineering knowledge management.

Recently, information retrieval approach/system

development has focused on retrieving documents

related to a user query while retrieving as few irrelevant

documents as possible. To pursue the above goal,

numerous studies on information retrieval have been

developed from various aspects, including modeling

[18,25,26], document classification and categorization

[1,3,6–9], system architecture [22], user interface

[19,24], data visualization [16,20], filtering [2,13–

15,23], and language [18]. However, these approaches

in the studies were unsuitable to solve the functional

feature-based reference design retrieval since these two

structural types of document and functional feature of

the part are different. Moreover, we also discovered no

effective and practical method/approach for retrieving

related engineering knowledge in engineering design

based on querying the levels of customer requirements,

functional requirements, functional features, and

engineering specifications. Therefore, this circum-

stance causes a bottleneck for sharing valuable product

information and engineering knowledge in engineering

design.
This study applies the ART1 neural network to

realize a scheme for functional feature-based refer-

ence design retrieval to provide engineering designers

with easy access to relevant reference information and

knowledge. This objective can be achieved by

performing the following tasks: (i) designing a

functional feature-based reference design retrieval

process, (ii) developing a functional feature repre-

sentation, (iii) investigating ART1 neural network, (iv)

implementing a functional feature-based reference

design retrieval mechanism, and (v) experimenting

with functional feature-based case clustering.
2. Functional feature-based reference design

retrieval

This section first briefly presents a proposed

engineering knowledge management framework. Sub-

sequently, the process of functional feature-based

reference design retrieval is described. Three main

areas of the process of functional feature-based

reference design retrieval then are explained, namely:

(i) functional feature representation, (ii) ART1 neural

network, and (iii) functional feature-based case retrieval

by ART1. Each portion involves several important

techniques. Techniques related to the representation of

functional feature include the definition of functional

features and binary code-based representation for

functional features. For developing the ART1 neural

networkmodel, ART1characteristics are identifiedfirst,

followed by the ART1 architecture and algorithm. The

development of a method for similar case retrieval

involves techniques for case-based representation of a

designed entity, case clustering, and case similarity

ranking. These techniques pave the way for imple-

mentation a mechanism for functional feature-based

reference design retrieval.

2.1. Engineering knowledge management

framework

This subsection presents an overview of a proposed

engineering knowledge management framework for

supporting knowledge intensive activities in engineer-

ing design [4]. From Fig. 1, the framework is

illustrated by the knowledge management life cycle,

which consists of engineering knowledge creation,
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Fig. 1. Engineering knowledge management framework.
capture, compilation and storage, and retrieval/reuse/

query.

In the proposed engineering knowledge manage-

ment framework (Fig. 1), the knowledge retrieval part

can be differentiated into three types, namely (1)

customer requirement-based knowledge retrieval, (2)

functional requirement-based knowledge retrieval,

and (3) functional feature-based knowledge retrieval.

This study primarily focuses on the functional feature-

based knowledge retrieval, which is displayed as the

shaded portion and surrounded by the broken line, as

illustrated in Fig. 1.

2.2. Functional feature-based reference design

retrieval process

This section details the process of functional

feature-based reference design retrieval, which aims

to retrieve the most similar cases as references from

the historical knowledge repository according to the

query of the users for functional features. To describe

this retrieval process, the functional feature-based

reference design retrieval process is designed using

the simple and generic software architecture, as shown

in Fig. 2. First, before the retrieval process can be

initiated, the ART1 neural network must be trained
and tested by training and testing historical samples of

functional features. During the learning process of the

ART1 neural network, the functional features in a

historical case are represented as binary code. Once

the learning process is completed, cases in the

historical knowledge repository are clustered based

on their functional features. The fact that the cases are

clustered allows the retrieval process to be initiated.

The engineering designer first specifies a set of

functional features that are treated as binary variables.

ART1 neural network for functional feature-based

case clustering then must be applied before the actual

cases acquisition, providing a case classifier for the

functional feature query. This query is then processed

through the ART1 neural network to acquire similar

cases. Before being sent to the engineering designer,

these similar cases are ranked based on the calculation

of similarity coefficients. The engineering designer

then examines the set of ranked cases to obtain useful

information and knowledge.

2.3. Representation of functional features

Successfully utilizing the ART1 neural network in

the functional feature-based case clustering requires

first defining the functional features of parts. Subse-
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Fig. 2. Functional feature-based reference design retrieval process.

Fig. 3. Typical functional features for a part.
quently, a binary code-based representation is used to

represent the defined functional features. The follow-

ing subsections discuss the details.

2.3.1. Functional features definition

Functional feature identification is designed to

define the functional features of a part and thus

facilitate functional feature-based case clustering. By

investigating studies on functional features in feature-

based design, most functional features of a part are

formed based on the feature interactions that depend on

the spatial relationships between features [5]. Fig. 3

specifies the functional features formed by the feature

interactions. The features can be classified into positive

and negative features. Consequently, the feature

interactions can be divided into three types, namely:

(i) a positive feature and a positive feature, (ii) a

positive feature and a negative feature, and (iii) a

negative feature and a negative feature. The first type

includes the relationships ‘‘adjacent_to’’ and ‘‘inter-

sect’’. Meanwhile, the second type includes the

relationships ‘‘add_on’’ and ‘‘is_in’’. Finally, the third
type includes the relationships ‘‘adjacent_to’’, ‘‘is_in’’,

and ‘‘intersect’’. Each type of feature interactions

creates several functional features based on the specific

relationship between features. For example, a positive

feature and a negative feature may create the ‘‘hole’’,
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Fig. 4. (a) Binary code-based representation of functional features for the part shown below and (b) sample part.
‘‘groove/slot’’ or ‘‘step’’ function based on the

relationship ‘‘is_in’’.

2.3.2. Binary code-based functional features

representation

Parts are characterized using a list of functional

features, which are treated as binary variables. From

the previous subsection, these eleven functional

features are required to record the specific part

features. When coding a part based on the list, ‘‘one’’

means that the part has a given functional feature,

while ‘‘zero’’ means that it does not.

Fig. 4(a) shows the binary code-based representa-

tion of functional features of the sample part displayed

in Fig. 4(b). The part is represented by an 11-

component vector (X1, X2, . . ., X11). The components

X1–X3 in the vector indicate the ‘‘convex’’, ‘‘square’’,

and ‘‘cylinder’’ functions, which are formed by the first

type of feature interactions. Furthermore, the compo-

nents X4–X7 denote the ‘‘protrusion’’, ‘‘hole’’,

‘‘groove/slot’’, and ‘‘step’’ in an ordered sequence.

They are generated through the second type of feature

interactions. Finally, the last four components X8–X11

express the functional features of the third type of

feature interactions, namely ‘‘convex’’, ‘‘convex’’,

‘‘square’’, and ‘‘cylinder’’. Therefore, the functional

features involved in the sample part include the ‘‘hole’’

and ‘‘slot’’ functions, and are represented as ‘‘one’’.
2.4. Adaptive resonance theory (ART1) neural

network

This study adopts the adaptive resonance theory

(ART1) neural network to solve the problem of

functional feature-based case clustering. The ART1

neural network can be defined in terms of ART1

characteristics, ART1 architecture, and ART1

algorithm, respectively. The details are presented

below.

2.4.1. ART1 characteristics

Examination of neural networks reveals that most

can either be plastic (during the learning phase) or

stable (during recall, when the weights are frozen), but

not both. To overcome the stability-plasticity dilemma

faced by every learning system, the Adaptive

resonance theory (ART1) neural network was pro-

posed by Carpenter and Grossberg [10,11] and serves

the purpose of cluster discovery through unsupervised

learning. This theory includes the following char-

acteristics:
� B
inary-based input vector: ART1 is designed for

binary 0/1 inputs, where each input vector may have

more 0/1 elements.
� S
tability and plasticity: The ART1 network is

sufficiently stable to preserve significant past
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Fig. 5. Basic ART1 architecture.
learning but still remain sufficiently adaptable to

incorporate new information (clusters) as necessary.
� U
nsupervised learning: In unsupervised learning,

no external teacher or critic oversees the learning

process and provides feedback information. More-

over, no environmental feedback exists to indicate

the nature or correctness of the outputs. The

network must discover its own patterns, features,

regularities, correlations, or categories in the input

data and code for them in the output.
� Q
uick learning capability: When an input pattern is

not sufficiently similar to any existing prototype,

and a new node is created to represent a new

category involving the input pattern as the proto-

type.
� C
oncept of vigilance parameter: The above-men-

tioned ‘‘sufficiently similar’’ depends on a vigilance

parameter r, with 0 < r < 1. The similarity

condition is easier to meet if r is small, leading

to coarse categorization. On the other hand, if r is 1,

numerous finely divided categories are formed. The

vigilance parameter value can be adjusted during

learning such that increasing it can lead to

subdivision of existing categories.

2.4.2. ART1 architecture

Fig. 5 illustrates the architecture of the ART1

neural network. Each input vector X has m binary 0 or

1 elements. Let the weights on the bottom-up links, x j

to yi, be denoted by w̄i j, and let the weights on the

top-down links, yi to x j, be denoted by wi j. Notably,

the first subscript of a top-down weight indicates

the source node, while the second subscript indicates

the destination node. The weight vectors wi ¼
ðwi1;wi2; . . . ;wimÞT, i = 1, 2, . . ., n, represent stored
prototype vectors and thus are also binary 0 or 1

vectors, where i indicates the output nodes or

categories, each of which can be enabled or disabled.

2.4.3. ART1 algorithm

To clearly describe the operation of the ART1

neural network, the algorithm characterizing ART1 is

as follows. Before detailing the algorithm, the

variables used in the ART1 neural network are

summarized as follows: m is the number of input

vector elements, n the number of output nodes, wi j the

weights on the top-down links, where i denotes the

index of the output node (i = 1, 2, . . ., n) and j

represents the index of the input vector elements

( j = 1, 2, . . ., m), w̄i j the weights on the bottom-up

links, x the input vector, yi the net value, r the

similarity value, and r is the vigilance parameter.

The algorithm of the ART1 neural network is

displayed as follows:

Input: A set of input vector x to be clustered, where

x 2 {0,1}m.

Output: A set of weight vectors wi ¼ ðwi1;wi2; . . . ;
wimÞT, i = 1, 2, . . ., n, representing the prototype

vectors of the discovered clusters, where n is the

number of clusters identified.

Step 0. Set wi j(0)=1, w̄i j(0) = 1/(1 + m), for 0 <

r � 1.

Step 1. Feed a new sample x to the input nodes.

Step 2. Enable all the output nodes.

Step 3. Use bottom-up processing to obtain a

weighted sum

yi ¼ ðw̄iÞTX ¼
Xm

j¼1

w̄i jx j (1)

where w̄i j is the normalization of wi j given by

w̄i j ¼
wi j

0:5 þ
P

j wi j
; j ¼ 1; 2; . . . ;m: (2)

Step 4. Use the max net procedure to identify the

output node i with the largest yi value.

Step 5. Verify that x belongs to the ith cluster by

performing top-down processing and forming the
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Fig. 6. Case model.
weighted sum
P

j wi jx j. Then perform the following

check:

If r ¼
Pm

j¼1 wi jx j

xk k > r; where xk k ¼
Xm

j¼1

x j

�� ��: (3)

Then x belongs to the ith cluster, proceed to Step 6,

Otherwise, if the top layer has more than a single

enabled node remaining, then go to Step 7,

Alternatively, create a new output node i with

its initial weights set as in Step 0 and proceed to

Step 6.
Table 1

The binary code for functional features of five cases

Input

samples

Positive feature and positive feature Positive feature and

Adjacent_to,

convex

Intersect Add_on,

protrusion

Is_in

Square Cylinder Hole

x1 (Case_1) 0 0 1 0 0

x2 (Case_2) 0 0 1 1 0

x3 (Case_3) 1 0 1 1 0

x4 (Case_4) 0 1 0 0 0

x5 (Case_5) 0 1 1 0 0

xi indicates the vector for functional features in Case_i.
Step 6. Update the weights as follows:

wi jðt þ 1Þ ¼ wi jðtÞx j; j ¼ 1; 2; . . . ;m (4)

which updates the weights of the ith cluster (either

created or existing). Then go to Step 1.

Step 7. The output node i is disabled by clamping yi

to 0. This node thus does not participate in the current

cluster search. The algorithm returns to Step 3, and

will attempt to establish a new cluster different from

i for pattern x.
negative feature Negative feature and negative feature

Adjacent_to,

convex

Is_in,

convex

Intersect

Groove Step Square Cylinder

1 0 0 1 1 1

0 0 1 0 0 0

0 0 0 0 0 0

1 1 0 1 1 1

1 0 0 0 1 1
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From the above algorithm, the ART1 algorithm

includes both a learning mode and a performance

model. For a given input sample x, the algorithm can

terminate in two ways. First, if a matching prototype

vector wi is found, it is adjusted in Step 6 based on

Eq. (4) and the category i is outputted. Second, if the

stored categories contain no suitable prototype vector,

a new output node i* is created, which represents a new

category with a prototype vector w	
i that equals input x

in Step 6 by Eq. (4), and finally the new category i* is

created.

2.5. Functional feature-based cases retrieval by

ART: an example

This section uses a hypothetical part to illustrate

functional feature-based case retrieval by applying the

ART1 neural network. First, a case-based representa-

tion of a designed entity is introduced to record

related product information and engineering knowl-

edge [4]. Then the functional feature-based case

clustering using the ART1 neural network is inter-

preted using an example. Finally, the vector model is

applied to deal with the functional feature-based case

ranking.

2.5.1. Case-based representation of a designed entity

From Fig. 6(a) ‘‘Case’’ is viewed as a box that

contains related tags and links the product information

and engineering knowledge of a design entity (that is,

an engineering model). The scheme of a case consists

of three features: case feature, model feature, and

semantic feature. Case feature defines the contents of

case data, such as case name, ID, tag ID, name, model

creator, contributor, date, language, version, and

location. Meanwhile, model feature indicates the

tag for product information that records the detailed

information of a design entity, including customer

requirements, functional requirements, and functional

features. Finally, semantic feature represents the tags

for engineering knowledge that also record the design

knowledge and experience of engineering designers.

These tags for engineering knowledge are classified

into three categories: (1) the tag for feature-based

design, (2) the tag for engineering change, and (3) the

tag for design by modification/reference. Each of these

tags points to relevant production information or

engineering knowledge.
2.5.2. Functional features-based cases clustering

To validate the aforementioned ART1 technique (as

discussed in Sections 2.4.2 and 2.4.3) for functional

feature-based case clustering, the functional features

of five cases (Case_1, Case_2, Case_3, Case_4 and

Case_5) are chosen. Table 1 shows the binary code for

these functional features.

From the initialization process of ART1, the initial

weights are wi j = 1 and w̄i j ¼ 1
12 ; j = 1, 2, . . ., 11;

i = 1–5. Meanwhile, the vigilance parameter r is set to

0.5. The input samples are then fed to the ART1

algorithm individually. Additionally, five output nodes

are assumed to be available.
� S
ample x1 (Case_1): when sample x1 is fed, the one

among the five output nodes with the largest output

is denoted as number 1. Since wi j ¼ 1 for all i, j at

this time, r = 1 in Eq. (3) and the vigilance test is

passed unconditionally. Consequently, the first

cluster is defined unconditionally. The weights

are then changed based on Eqs. (4) and (2):

w1;3 ¼ w1;6 ¼ w1;9 ¼ w1;10 ¼ w1;11 ¼ 1;

w1; j ¼ 0; j ¼ 1; 2; 4; 5; 7; 8

w̄1;3 ¼ w̄1;6 ¼ w̄1;9 ¼ w1;10 ¼ w1;11 ¼ 2

11
w̄1; j ¼ 0; j ¼ 1; 2; 4; 5; 7; 8

Sample x2 (Case_2): when sample x2 is fed, no top-
�

layer node is competing for clustering since only one

active node exists; that is, node 1 is the unconditional

winner. The vigilance test indicates that

r ¼
P11

j¼1 w1xj

kxk ¼ 1

3
¼ 0:33< r ¼ 0:5

Hence, it fails the test. Since output node i now is

the single enabled node, further searching is

unnecessary, and sample x2 is considered a new

cluster represented byanother outputnode, number2.

The corresponding weights w2 and w̄2 then are

computed as:

w2;3 ¼ w2;4 ¼ w2;8 ¼ 1; w2;j ¼ 0;

j ¼ 1; 2; 5; 6; 7; 9; 10; 11

w2;3 ¼ w2;4 ¼ w2;8 ¼ 2

7
; w2;j ¼ 0;

j ¼ 1; 2; 5; 6; 7; 9; 10; 11
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Sample x3 (Case_3): when sample x3 is fed, the

following output values are computed based on
�

Eq. (1):

y1 ¼ 2

11
¼ 0:18; y2 ¼ 4

7
¼ 0:57

Since y1 < y2, therefore, output node 2 is a winner.

Moreover, the vigilance test succeeds since

r ¼
P11

j¼1 w2 jx j

xk k ¼ 2

3
¼ 0:67> r ¼ 0:5

Accordingly, weights w2 and w̄2 must be

changed based on Eqs. (4) and (2), as follows:

w2;3 ¼ w2;4 ¼ 1; w2;j ¼ 0;

j ¼ 1; 2; 5; 6; 7; 8; 9; 10; 11

w2;3 ¼ w2;4 ¼ 2

5
; w2;j ¼ 0;

j ¼ 1; 2; 5; 6; 7; 8; 9; 10; 11

Sample x4 (Case_4): when sample x4 is fed, the
�

following output values are computed based on

Eq. (1):

y1 ¼ 8

11
¼ 0:73; y2 ¼ 0

Since y1 > y2, therefore, output node 1 is a winner.

Moreover, the vigilance test succeeds since

r ¼
P11

j¼1 w1 jx j

xk k ¼ 4

6
¼ 0:67> r ¼ 0:5

Therefore, weights w1 and w̄1 must be changed

based on Eqs. (2) and (4), as follows:

w1;6 ¼ w1;9 ¼ w1;10 ¼ w1;11 ¼ 1; w1;j ¼ 0;

j ¼ 1; 2; 3; 4; 5; 7; 8

w1;6 ¼ w1;9 ¼ w1;10 ¼ w1;11 ¼ 2

9
; w1;j ¼ 0;

j ¼ 1; 2; 3; 4; 5; 7; 8
Fig. 7. Cosine of u is adopted as sim(cj,q).
� S
ample x5 (Case_5): when sample x5 is fed, the

following output values are calculated based on

Eq. (1):

y1 ¼ 2

3
¼ 0:67; y2 ¼ 2

5
¼ 0:4

Since y1 > y2, therefore, output node 1 is a winner.

Moreover, the vigilance test succeeds since

r ¼
P11

j¼1 w1xj

kxk ¼ 3

5
¼ 0:6> r ¼ 0:5

Therefore, weights w1 and w̄1 must be altered based

on Eq. (4) and (2), as follows:

w1;6 ¼ w1;10 ¼ w1;11 ¼ 1; w1;j ¼ 0;

j ¼ 1; 2; 3; 4; 5; 7; 8; 9

w1;6 ¼ w1;10 ¼ w1;11 ¼ 2

7
; w1;j ¼ 0;

j ¼ 1; 2; 3; 4; 5; 7; 8; 9

Proceeding the above learning simulation of the

ART1 neural network identifies two categories: one

contains samples x1 (Case_1), x4 (Case_4), and x5

(Case_5), and other contains samples x2 (Case_2) and

x3 (Case_3). In this example, if x5 (Case_5) is a query

pattern, then x1 (Case_1) and x4 (Case_4) are similar

cases to the x5 (Case_5) in functional features.

2.5.3. Functional feature-based cases ranking

The vector model defines the similarity between

two terms by the cosine of the angle between their two

vectors. Therefore, this vector model is adopted and

slightly modified to calculate the degree of similarity

between similar cases acquired through functional

feature-based case clustering based on the query of

functional features. Meanwhile, the query vector~q can

be defined as~q = (x1,q, x2,q, . . ., x11,q), while the vector

for similar cases~c j is represented by~c j=(x1, j, x2, j, . . .,
x11, j). Therefore, a similar case c j and user query q are

represented as 11-dimensional vectors, as shown in

Fig. 7. The correlation between vectors ~c j and ~q is

quantified as follows:

simðc j; qÞ ¼ ~c j�~q
~c j

�� ��
 ~qj j
¼

P11
i¼1 xi; jxi;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11

i¼1 x2
i; j

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11
j¼1 x2

i;q

q

Using the example discussed at the end of the

previous subsection, the correlation coefficient among
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x1 (Case_1) and x5 (Case_5), x4 (Case_4) and x5

(Case_5) is calculated as:

simðc1; c5Þ ¼
P11

i¼1 xi;1xi;5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11
i¼1 x2

i;1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11
j¼1 x2

i;5

q ¼ 4ffiffiffi
5

p ffiffiffi
5

p ¼ 0:8

simðc4; c5Þ¼
P11

i¼1 xi;4xi;5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11
i¼1 x2

i;4

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP11
j¼1 x2

i;5

q ¼ 4ffiffiffi
6

p ffiffiffi
5

p ¼ 0:73

According to the above calculation results, x1

(Case_1) resembles x5 (Case_5) than x4 (Case_4).
Fig. 8. User interface—func
Therefore, the degree of similarity to query pattern

x5 (Case_5) follows the order x1 (Case_1) and x4

(Case_4).
3. Mechanism implementation and experiment

Based on the proposed techniques for functional

feature-based reference design retrieval, this study

implemented a prototype functional feature-based

reference design retrieval mechanism at the Enter-
tional features query.
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Fig. 9. User interface—similarity ranking for acquired results.
prise Engineering and Integration Research Lab

(EE&IRL) of National Cheng Kung University,

Taiwan, ROC. This section presents the implemen-

tation environment and the results of a functional

feature-based reference design retrieval mechanism,

as well as the experiment for functional feature-

based case clustering. Furthermore, the experiment

involves portions of the experimental results and

error measurements.

3.1. Functional feature-based reference design

retrieval mechanism implementation environment

and results

Based on the proposed techniques on functional

feature-based reference design retrieval, a prototype

functional feature-based reference design retrieval

mechanism is developed using Java in an environment

equipped with the following computer hardware: Acer

Veriton 7100 PC and software—Windows 2000 Server,

Borland JBuilder 4.0, and Microsoft SQL Server 2000.

Figs. 9 and 10 show two of the user interfaces of a

functional feature-based reference design retrieval
mechanism. Meanwhile, Fig. 8 shows the screen of

functional feature query for the users, while Fig. 9

shows the screen of similarity calculation and ranking

for the acquired results.

3.2. Experiment for functional feature-based cases

clustering

Based on the implemented mechanism, an experi-

ment is performed involving functional feature-based

case clustering. This subsection first presents the

experimental results on functional feature-based case

clustering. Subsequently, error measurements for

functional feature-based case clustering are analyzed.

3.2.1. Experimental results

Fig. 10 shows an illustrative example. These

experimental results are obtained for 30 input samples

using the ART1 neural network. Meanwhile,

Fig. 10(a) displays that the 30 samples are classified

into six different categories with the lower vigilance

value (r = 0.2), while Fig. 10(b) shows that the 30

input samples are organized into 15 categories with
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Fig. 10. Category grouping of ART1 neural network with various vigilance parameters (a) r = 0.2, (b) r = 0.5 and (c) r = 0.8.
the middle value of the vigilance parameter (r = 0.5).

With the higher vigilance value (r = 0.8), the 30 input

samples are grouped into 21 recognition categories, as

shown in Fig. 10(c).
Fig. 11. Average error with variable vigilance parameter.
3.2.2. Error measurements

For the error measurements of functional features-

based cases clustering, this study applies the concept

of ‘‘total distance’’ to measure the error status of

functional feature-based case clustering under the

conditions of various vigilance parameters (i.e.,

r = 0.1, 0.2, 0.3, . . ., 0.9). The formula for average

error is defined as

average error = total distance/cluster number

Furthermore, the total distance is given byP
pðmini d

p
i Þ;where d

p
i denotes the distance between

the pth input sample and ith output layer.

Fig. 11 illustrates the average error for functional

feature-based case clustering with variable vigilance

parameters (r). Clearly, the average error gradually

decreases with increasing vigilance parameter of
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incremental values. Meanwhile, Lippmann [17]

indicated the vigilance value (r = 0.9) is set will be

optimum for generating the best result of ART1

clustering.
4. Conclusions and discussions

4.1. General remarks

This study first presents an engineering knowledge

management framework, and then focuses on develop-

ing technology for functional feature-based reference

design retrieval. The crucial techniques involved in

functional feature-based reference design retrieval

include: (1) a binary code-based representation for

functional features, (2) a case-based representation for

organizing information and engineering knowledge of a

designed entity, (3) ART1 neural network for functional

feature-based case clustering, and (4) similarity

calculation for functional feature-based case ranking.

The functional feature-based reference design retrieval

mechanism is implemented based on the above-

mentioned techniques. This mechanism is used to

perform anexperiment for functional feature-basedcase

clustering and the experimental results are discussed.

The results of this study can facilitate the practice of

engineering knowledge sharing for engineering knowl-

edge management in engineering design environments,

and subsequently can increase product development

capability, reduce development cycle time and cost,

and ultimately enhance product marketability.

4.2. Future research

Future research could examine the following areas

to improve the practice of engineering knowledge

sharing in engineering design.
� C
ustomer need-based reference design retrieval

mechanism: the establishment of customer needs is

the first task in the engineering design process. In

this task, knowledge workers refer to historical

product information and engineering knowledge for

performing their work. Therefore, effectively

retrieving theses references from the historical

knowledge repository based on customer needs

represents an important issue in future research.
� F
unctional requirement-based reference design

retrieval mechanism: for functional requirement

establishment, the functional requirements are

obtained by analyzing customer needs. Similarly,

historical product information and engineering

knowledge are retrieved as references based on

the perspective of functional requirements. There-

fore, a reference design retrieval should be

developed based on the description of functional

requirements.
� E
ngineering specification-based reference design

retrieval mechanism: this issue represents an

extension of this study. Based on the search results

of the functional feature-based reference design

retrieval mechanism developed in this study, the

engineering specification-based reference design

retrieval mechanism can filter more precise results

by using engineering specifications.
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